te Data Transformation and Intial Lesson in Water

Tufa Dinku

Outline

- I. The Value Climate Data Water Resources Managemnet
- II. Challenges to Availability of Climate Data
- III. The ENACTS Approach
 - **1. Improving Data Availability**
 - 2. Improving Access to Climate Information
 - 3. Improving the Use of Climate Information
- **IV. Major Outputs**
- V. What is next?

I. Value of Climate Data

- Analysis of historical data that enables detection and attribution of climate change.
- Analysis of vulnerability to climate extremes and risk thresholds.
- Planning and managing water development schemes such as reservoirs.
- Enhancing drought and flood predictions that can support disaster risk preparedness and prevention.

II. Major Challenges

- Number of weather stations inadequate and declining
- Most stations are located along main roads
 - Limited availability climate information and services to the rural community
- Serious gaps in observations (missing data)
- Questionable data quality
- Limited access and use of the available data

Challenges: Stations Distribution inadequate and declining

Average (2001 to 2010) number of stations per 100km X 100km grid box used by GPCC gridded rainfall product

Some Contributing Factors

Conflict or political upheaval

Main factors

Lack or declining investment in the establishment and maintenance of weather stations

Number of stations 1997 1999 2001 2003 2005 2007 ∞ 2011

Average number of stations reporting every year

Year

Still much more data at national level

However, most NMHS have much more data than what is accessible outside the country/NMHS

IRI

II. The ENACTS Approach

- Strives to simultaneously improve <u>availability</u>, <u>access</u> and <u>use</u> of climate information.
- Works with NMHS to <u>quality-control</u> all available station data and combine them with satellite and reanalysis products.
- The main focus of ENACTS is creation of reliable climate information for local decision-making.

ENACTS Approach: Three pillars

ENAC TS

Improve Availability

- Build capacity of NMHS
- Quality Control station data
- Combine station data with proxies
- Improve seasonal forecast

Enhance Access

- Install IRI Data
 Library
- •Develop online tools for data analysis and visualization
- Create mechanisms for data sharing

Promote Use

Engage users:

- Raise awareness
- Build capacity of users to understand and use climate info
- Involve users in product development

1. Improving Availability: Data Blending

2. Improving Access: Map Rooms

Data + IRIDL =

Climate Analysis

Climate Monitoring

Climate Forecast

Climate Analysis

Monthly Climate Analysis

Rainfall and temperature time series (1983-2010) reconstructed from station observations and remote sensing proxies. This interface allows users to view rainfall. maximum and minimum temperature climatologies and anomalies.

Dekad Climate Analysis

Rainfall and temperature time series (1983-2010) reconstructed from station observations and remote sensing proxies. This interface allows users to view rainfall. maximum and minimum temperature climatologies and anomalies.

Improving Access: Climate Analysis Tool

Improving Access: Climate Analysis Tool

Improving Access: Climate Monitoring Tool

Improving Access: Climate Forecast Tool

Explore potential impacts of different ENSO

Improving Access: Climate Forecast Tool

Translates seasonal forecast from tercile to rainfall amounts

Improving Use

i. Awareness raising

ii. Training

iii. Involving users in product generation

Major Outputs

 Over 30/50-years of climate data for every 4km/5km grid across each country:

 \odot Now data available where there are no stations

- Installation of the IRI Data Library at NMS
 - A powerful tool for generating climate information

Unprecedented online access to information products:

- \odot Satisfies the needs of many users
- $_{\odot}$ Overcomes (partly) the challenges of data access
- Built capacity at NMS and some user communities

ENACTS Countries

Ethiopia Tanzania Madagascar Rwanda Gambia CILSS

Next: Ghana Mali Zambia Burkina(?)

IV. What is Next?

1. Add more climate variables (RH, PET/ET, ...)

2. Include seasonal prediction at national level

Evaluate; Improve; Implement

3. Add sector-specific Maprooms: Health, Agriculture, Water, Disaster, ...

4. Improved Forecast Presentation

What is Next: Improved presentation of seasonal forecast

 (\mathbf{IR})

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

з

4 precipitation

Country Online Maproom

http://www.ethiometmaprooms.gov.et:8082/maproom/ http://maproom.meteo.go.tz/maproom/ http://map.meteomadagascar.mg/maproom/ http://maproom.meteorwanda.gov.rw/maproom/Climatology/index.html http://cradata.agrhymet.ne/maproom/

Thank You

International Research Institute for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

web: iri.columbia.edu

@climatesociety

.../climatesociety

Tufa Dinku tufa@iri.columbia.edu

